
Journal of Statistical Physics, Vol. 58, Nos. 3/4, 1990 

The Border Model in One Dimension 
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The magnetic susceptibility is studied by the methods of series analysis for the 
one-dimensional border model (a special case of the continuous-spin Ising 
model). The structure of this model is analyzed and two conjugate pairs of 
singularities are found near the real (physical) temperature axis. All the numeri- 
cal results are consistent with the previously known rigorous results, but do not 
add to the knowledge of the critical properties. 
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1. I N T R O D U C T I O N  A N D  S U M M A R Y  

Although the method of using perturbation series in the study of critical 
phenomena was not originated by Domb (see, for example, Fuchs, (1) 
Yvon, (2'3) and Rushbrooke and Scoins(4l), it is greatly to his credit that he 
recognized the value of this approach and contributed strongly to it 
(Domb, (5) Domb and Sykes(6)). In addition, he built up at King's College 
London a center of world expertise in this area. In the years since then, this 
area has considerable grown and developed. The present work does follow 
in the line from those developments in that we consider by means of series 
analysis the question of the critical parameters of the one-dimensional 
border model. In addition, we show how an approach, interrelated 
with a model's scaling limit field theory, which was previously used for 
investigating universality and pluralism in higher dimensions can be 
extended to the case of one dimension with its special feature of a zero- 
temperature critical temperature. 
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In Section2 we introduce the border model and show how the 
rigorous results available for the critical behavior of the correlation length 
can be used to bound the critical behavior of the magnetic susceptibility. In 
Section 3 we explore the relation between the unique field theory corre- 
sponding to the critical behavior of the one-dimensional, continuous-spin 
Ising model, and the critical exponents. It is found, since this model exhibits 
plural universality classes, that the popular method for extracting the criti- 
cal behavior from the field theory alone must fail in this case. In Section 4 
we examine the results for the magnetic susceptibility that can be deduced 
from the high-temperature series expansions. We find that these results are 
compatible with the known rigorous results, but that more series coef- 
ficients are required to have a hope of a reasonable estimate of the 
unknown critical parameters. 

2. O N E - D I M E N S I O N A L  BORDER M O D E L  

We will study the one-dimensional border model. (7) It is a special case 
of the continuous-spin Ising model. The partition function for the con- 
tinuous-spin model is 

z=M-'f exp ( K s i s i + l - A s 2 - g o s 4 + H s i )  (2.1) 
- -  i = 1  

where M is a formal normalization constant such that Z(K = H = 0) = 1, N 
is the number of lattice sites, K =  J/kT, with J the exchange integral, k is 
Boltzmann's constant, and T is the absolute temperature. The condition 
( s 2 ) =  1 when K = H = 0  determines A as a function of go- The border 
model is defined by the further restriction that A = 0, which corresponds to 
go = gb = [ V(3/4)/V(1/4) ] 2. 

In a recent paper Baker (8) has proven for the continuous-spin Ising 
model that as T-+ 0, i.e., K--+ 00, the critical point of this model, one has 

kK 2 
CH ~ 2ao (2.2) 

where CH is the specific heat per lattice site at constant magnetic field 
( H =  0), and 

1 l 
l n ~ u K  2, 4go~u<~=- (2.3) 

go 
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where ~ is the "true" correlation length. These results are in contrast to the 
usual spin-l/2 Ising model results 

C H ~ kK 2 sech2(K), ~ ~ gel-2K, Z ~ e2/r (2.4) 

We will study the (reduced) magnetic susceptibility )~. In one dimen- 
sion, we may write it as 

Z = 2 (aoCrJ}= <~r0 ~} 1 + ~ (~r~ (2.5) 
- - o O  " = i  

which, by reflection positivity, (9) may be re-expressed as 

) ~ = < ~ }  1+ 2 _ ~ d # ( t )  e - ` j  , d#>~O, d # ( t ) = l  (2.6) 
- ~ ]  _ 

Now in terms of the largest two eigenvalues of the transfer matrix fll and 
22, the correlation length is defined as 4=-1/ ln(22/21) .  Thus, as the 
integrand is positive and Vj, e - ' j  is monotonically decreasing in t, we may 
replace e - ' j  in (2.6) by its value at the lower limit of the integral, so we 
conclude that 

<O-o i + .= \ 11/j- <Q} 

Asymptotically as K--* oe, i.e., as 22/21 --* 1, we have 

Z~<2(a2)~ (2.8) 

which provides an asymptotic upper bound on the behavior of • in terms 
of the results in (2.3). 

3. RELATION OF THE C R I T I C A L  E X P O N E N T S  
TO T H E  O N E - D I M E N S I O N A L  FIELD T H E O R Y  

There does exist a well-defined and unique field theory for all go > 0 
for the critical point limit of the continuous-spin Ising model, as has been 
shown by Isaacson (l~ and Marchesin. ~ The variation that we have obser- 
ved with go relates exclusively to the way in which this limit is approached. 
It stands to reason that it is not going to be possible for more than one set 
of critical behavior to be computed from a unique field theory. We will 
now see this point in some detail. The field theory approach to the calcula- 
tion of the critical exponent v relies (12) on the result 

8 l n ( Z ( 2 ) / Z 3 )  e 2 - - l = 3  lira go = 0  (3.1) 
v go ~ o~ 8go _ 
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where go = 24goa3/K2, the Z ( 2  ) and Z3 are renormalization constants, and 
a is the formal lattice spacing, which in the current case is just a = 1/4. The 
field theory approach in one dimension has been extensively studied by 
Nickel (~3) at least insofar as the analysis of the Callan-Symanzik beta func- 
tion, which determines the renormalized coupling constant, is concerned. 
There was no clear indication of a lack of universality in this analysis, 
which looked no different than that for higher dimensions. The one-dimen- 
sional analysis was much more extensive, however, and a confluent 
singularity was found at the critical point. This singularity was blamed for 
the very slow convergence of the coupling constant series expansion, which 
is known to 35 terms. Setting the difference between the Eq. (3.1) deter- 
mination and the normal statistical mechanical one equal to zero, Baker (14) 
derived an equation for the critical amplitude of the correlation length 
under the assumption that ~ ~ D + ( ~ o ) ( 1 - K / K c )  V V~o. On the basis of 
this equation, he concluded for spatial dimension (1 < d < 4 )  that it was 
inconsistent to assume that v was the same for the border model, go = gb, 
as it is for go nearby. As a sidelight, one might wonder in the original 
derivation whether the form (2.1) is "more natural" or whether the special 
point A = 0 should have been instead defined with the spin-spin coupling 
term a perfect square, �89  S 2 -- i+1) , SO that A + K  would replace A in 
determining the special point. In fact, if this change is made, there is no 
difference in the basic result (3.3) quoted below, because the shift is 
proportional to K. As was shown in ref. 8, for the one-dimensional 
continuous-spin model the appropriate asymptotic behavior is 

~ exp[u(~0) K z + v(~,o) K +  w(go, K)],  w = o(K), as K ~ oo 

(3.2) 

for go > 0. Baker's (14) basic result [his Eq. (43)] is 

d 
!ira ~ a~a  a {ln[2.~(~o)(K-~(go, a ) - K - l ( ~ o ,  0 ) ) a - 2 ] } [ g 0 = 0  

g0 fixed 

(3.3) 

Note that the terms discarded in the derivation of (3.3) in ref. 14 are also 
negligible here because of the form of (3.2). In our case, the one-dimen- 
sional continuous-spin model with go > 0, the term K - l ( ~  o, 0 ) =  0 because 
the critical temperature is zero. If we solve (3.2) for K as a function of 
and substitute it into (3.3), we get 

]} :0 ,34, , - o  adaa In a 2 { _ v + _ [ v 2 _ - - ~ C ~ - _ l n ~ ) ] l / 2 } / 2  u go 
g0 fixed 
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which is, to leading order as ~ ~ oo, 

lira a ~aa In = 0 
~ o a2{ [(In {)/u] 1/2 _ v/2u} go 

g0 fixed 

(3.5) 

If we now perform the differentiation and take the limit as ~--, ~ ,  (3.5) 
becomes 

[7t'(go) u'(go) ] - 2 - 3 g o  l _ ~ + ~ j  =0 (3.6) 

Next if we integrate (3.6) with respect to go, we obtain 

O 
U(~o) -- go A ( g  ,:,_o, 2 (3.7) 

where O is a constant independent of go. Now, it was shown in ref. 8 that 

�88 ~< goU(go) ~< 1 (3.8) 

which is clearly violated near ~o=0 ,  gb, and oo because ,4(0)= 1/2, 
A(gb) = 0, and lim~0~ oo A(g0)/g0 = -2 .  As we pointed out at the beginning 
of this section, it is not surprising that in the light of hindsight the field 
theory approach should fail here, and indeed it does. However, with only 
weaker information than the exact solution, this approach does correctly 
point to trouble with a universality hypothesis for all ~a 0 > 0. 

4. S E R I E S  A N A L Y S I S  

In order to study the magnetic susceptibility, we use the series expan- 
sion of Nickel (15) of 21 terms, which he has kindly made available to us 
prior to publication. From (2.8) and (2.3) we expect that In Z will be 
bounded from above by a term proportional to K 2. Under reasonable 
hypotheses, it is not hard to show, since we know that In ~ is definitely 
proportional to K 2 as K--+ oe, that In )~ shares this property. Therefore we 
think it reasonable to study In Z by Pad6 approximants (see, e.g., ref. 16). 
In Table 1 we give some results. They are converged to the number of 
figures (with a possible error of one or two in the last figure) reported and 
are based on the [-N + 2/N](K)  Pad6 approximants, which have the correct 
asymptotic behavior at infinity. The reason that the convergence 
deteriorates where it does is straightforward enough to discover. The Pad6 
approximants to d ln  z /dK show that there is a pair of singular points at 
about 0.855_+0.372i and another pair at about -0.814_+0.305i. The 
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natural cut structure for the Pad6 approximants  seems to link each 
complex pair together across the positive and the negative real axes, 
respectively, and perhaps also to the point at infinity. In order to produce 
approximants which can be defined as the analytic continuation along the 
real (physical) axis, we use the method of Hunter  and Baker (17) (see also 
Baker ~18) and Baker etal.(19)). Therefore we have chosen to define an 
approximant  to a formal power series f ( z )=  Z f jz  j by first defining the 
polynomials PL, QM, and RN of degrees L, M, and N, respectively, by 

QM(z) f ' ( z )+PL(z ) f ( z ) - -RN(Z)=O(z  L+M+N+2) (4.1) 

The approximant  (called an integral approximant)  will be the solution of 

QM(z) y'(z) + PL(Z) y(z) -- RN(z) = 0 (4.2) 

and we will denote it by y = [N/L; M] in the modern notation. The advan- 
tage of this approach is that it can be integrated along the real axis directly 
between the pair of singularities and so has the possibility of reproducing 
the physical branch of the function. We have formed the [n /5 ;4]  for 
n = 1 ..... 10. The results are displayed in Table II for the coefficient u of K 2 
in (2.3). F rom (2.3) the bounds on u in In ~ are 

2.1884396... ~ u~8.753758... (4.3) 

for reference purposes. 
It will be observed that the series of values is just beginning to settle 

down into the allowed range. This result is in accord with the Hunter  and 

] ' ab le  I. In • 

K Ising model Border model Gaussian model 

0.0 0.0 0.0 
0.1 0.2 0.2132265 
0.2 0.4 0.4590539 
0.3 0.6 0.7490163 
0.4 0.8 1.0988312 
0.5 t.0 1.529626 
0.6 1.2 2.06758 
0.7 1.4 2.738 
0.8 1.6 3.54 
0.9 1.8 5. 

0.0 
0.2231436 
0.5108256 
0.9152907 
1.6094379 

oO 



The Border Mode l  in One Dimension 473 

Table II. Estimates of the Asymptot ic  
u in In X 

n /A 

1 --0.06172 
2 --0.41710 
3 --0.04287 
4 2.26597 
5 5.38088 
6 5.273292 
7 13.76704 
8 11.87216 
9 12.57838 

10 8.72926 

Baker (~7) dictum that it requires about six coefficients to represent the 
behavior at each singularity. In this case there are the four singularities 
mentioned above (which is why we choose M =  4) plus the one at infinity 
[the solution has the asymptotic form (2.3) when L = M +  1 ], so we would 
expect to need about 30 coefficients instead of the 21 we have currently 
available. This situation suggests the value of further work, which we 
believe is feasible in one dimension, to extend the length of the known 
series. 
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